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Abstract

Following Shrager and Johnson (1995) we study growth of logi-
cal function complexity in a network swept by two overlapping
waves: one of pruning, and the other of Hebbian reinforcement of
connections. Results indicate a significant spatial gradient in the
appearance of both linearly separable and non linearly separable
functions of the two inputs of the network; the n.l.s. cells are much
sparser and their slope of appearance is sensitive to parameters in
a highly non-linear way.

1 INTRODUCTION

Both the complexity of the brain (and concomittant difficulty encoding that com-
plexity through any direct genetic mapping), as well as the apparently high degree
of cortical plasticity suggest that a great deal of cortical structure is €mergent
rather than pre-specified. Several neural models have explored the emergence of
complexity. Von der Marlsburg (1973) studied the grouping of orientation selec-
tivity by competitive Hebbian synaptic modification. Linsker (1986.a, 1986.b and
1986.c) showed how spatial selection cells (off-center on-surround), orientation selec-
tive cells, and finally orientation columns, emerge in successive layers from random
input by simple, Hebbian-like learning rules. Miller (1992, 1994) studied the emer-
gence of orientation selective columns from activity dependant competition between
on-center and off-center inputs.

Kerzsberg, Changeux and Dehaene (1992) studied a model with a dual-aspect learn-
ing mechanism: Hebbian reinforcement of the connection strengths in case of cor-
related activity, and gradual pruning of immature connections. Cells in this model
were organized on a 2D grid, connected to each other according to a probability ex-
ponentially decreasing with distance, and received inputs from two different sources,
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A and B, which might or might not be correlated. The analysis of the network re-
vealed 17 different kinds of cells: those whose output after several cycles depended
on the network’s initial state, and the 16 possible logical functions of two inputs.
Kerzsberg et al. found that learning and pruning created different patches of cells
implementing common logical functions, with strong excitation within the patches
and inhibition between patches.

Shrager and Johnson (1995) extended that work by giving the network structure in
space (structuring the inputs in intricated stripes) or in time, by having a Hebbian
learning occur in a spatiotemporal wave that passed through the network rather
than occurring everywhere simultaneously. Their motivation was to see if these
learning conditions might create a cascade of increasingly complex functions. The
approach was also motivated by developmental findings in humans and monkeys
suggesting a move of the peak of maximal plasticity from the primary sensory
and motor areas towards parietal and then frontal regions. Shrager and Johnson
classified the logical functions into three groups: the constants (order 0), those that
depend on one input only (order 1), those that depend on both inputs (order 2).
They found that a slow wave favored the growth of order 2 cells, whereas a fast
wave favored order 1 cells. However, they only varied the connection reinforcement
(the growth Trophic Factor), so that the still diffuse pruning affected the rightmost
connections before they could stabilize, resulting in an overall decrease which had
to be compensated for in the analysis.

In this work, we followed Shrager and Johnson in their study of the effect of a
dynamic wave of learning. We present three novel features. Firstly, both the growth
trophic factor (hereafter, TF) and the probability of pruning (by analogy, ”death
factor”, DF) travel in gaussian-shaped waves. Second, we classify the cells in 4, not
3, orders: order 3 is made of the non-linearly separable logical functions, whereas
the order 2 is now restricted to linearly separable logical functions of both inputs.
Third, we use an overall measure of network performance: the slope of appearance
of units of a given order. The density is neglected as a measure not related to the
specific effects we are looking for, namely, spatial changes in complexity. Thus, each
run of our network can be analyzed using 4 values: the slopes for units of order 0,
1, 2 and 3 (See Table 1.). This extreme summarization of functional information
allows us to explore systematically many parameters and to study their influence
over how complexity grows in space.

Table 1: Orders of logical complexity

ORDER FUNCTIONS

0 True False

1 A'AB'B

2 AB'ABA.'B!'A.!BAvVB !AvB Av!B 'Av!B
3 A xor B, A==B

2 METHODS

Our basic network consisted of 4 columns of 50 units (one simulation verified the
scaling up of results, see section 3.2). Internal connections had a gaussian band-
width and did not wrap around. All initial connections were of weight 1, so that the
connectivity weights given as parameters specified a number of labile connections.
Early investigations were made with a set of manually chosen parameters (" MAN-
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UAL”). Afterwards, two sets of parameters were determined by a Genetic Algorithm
(see Goldberg 1989): the first, "SYM”, by maximizing the slope of appearance of
order 3 units only, the second, ” ASY”, byoptimizing jointly the appearance of order
2 and order 3 units ("ASY”). The "SYM" network keeps a symmetrical rate of
presentation between inputs A and B. In contrast, the ”ASY” net presents input
B much more often than input A. Parameters are specified in Table 1 and, are in
"natural” units: bandwidths and distances are in ”cells apart”, trophic factor is
homogenous to a weight, pruning is a total probability. Initial values and prun-
ing necessited random number generation. We used a linear congruence generator
(see p284 in Press 1988), so that given the same seed, two different machines could
produce exactly the same run. All the points of each Figure are means of several
(usually 40) runs with different random seeds and share the same series of random
seeds.

Table 2: Default parameters

MAN. SYM. ASY. name description
8.5 6.20 12 Wae  mean ini. weight of A excitatory connections
6.5 5.2 9.7 Wal  mean ini. weight of A inhibitory connections
8.5 8.5 134 Wbe  mean ini. weight of B excitatory connections
6.5 6.5 14.1 Wbi  mean ini. weight of B inhibitory connections
5.0 6.5 9.9 Wne  mu.ini. density of internal excitatory connections
3.5 1.24 124 Wni  m.ini. density of internal inhibitory connections
0:2 0.20 0.28 DW  relative variation in initial weights
7.0 1.26 0.65 Bne  bandwidth of internal excitatory connections
7.0 2.86 0.03 Bni bandwidth of internal inhibitory connections
0.7 0.68 0.98 Cdw  celerity of dynamic wave
1.5 3.0 -3.2 Ddw  distance between the peaks of both waves
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3.5 1.87 3.3 Tst  Threshold of stabilisation (pruning stop)

0.6 0.64 0.5 Bdf  bandwidth of DF dynamic wave

0.65 0.62 0:1:2 Pdf  base level of DF (total proba. of degeneration)
0.5 0.5 0.06 Pa probability of A alone in the stimulus set

0.5 0.5 0.81 Pb probability of B alone in the stimulus set
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3 RESULTS

3.1 RESULTS FORMAT

All Figures have the same format and summarize 40 runs per point unless otherwise
specified. The top graph presents the mean slope of appearance of all 4 orders
of complexity (see Table 1) on the y axis, as a function of different values of the
experimentally manipulated parameter, on the x axis. The bottom left graph shows
the mean slope for order 2, surrounded by a gray area one standard deviation below
and above. The bottom right graph shows the mean slope for order 3, also with
a l-s.d. surrounding area. The slopes have not been normalized, and come from
networks whose columns are 50 units high, so that a slope of 1.0 indicates that the
number of such units increase in average by one unit per columns, ie, by 3 units
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across a 4-column network. Because there were very few if any ”undefined” units,
the slopes approximately sum to zero. Standard deviations are obtained pointwise,
which gives a very conservative estimate of reliability.

3.2 OVERALL ASPECT OF THE NETS

Very few order 3 units were appearing. The mean slope with the ”SYM” and
"ASY” netwts was about 0.3 unit/column. As in Kertzsberg et al., units with
identical function tended to appear in blocks. The ?SYM” nets tend to have a
general overlay of order 2 units, with sparse units of other orders appearing in the
rightmost columns. The ”ASY” nets manifest sharp transitions between order 0
columns to the left and order 2 columns to the right, with sparse order 3 units
almost exclusively in the rightmost column.

3.3 CHANGE IN NETWORK WIDTH

Figure 1 presents the results of 4000 runs for each of 4 networks with identical
parameters ("SYM”) except for the number of columns, which varied from 4 to
10. This Figure allows to see how the other results of this paper scale when wider
networks are being used. All slopes decrease in a nearly hyperbolic manner. Since
the mean network of width N is embedded as the beginning of the mean network
of width N+P, this suggests that the effects of the growth reach a ceiling between
width 4 and 6, and that the lesser slopes of networks of width 6, 8 and 10 is due
to averaging between high slope in the first 4 columns and little afterwards. All

parameter sets gave similar results. In essence, this justifies our using only 4 columns
for this study.
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Figure 1: Scaling of the effects with network width.

3.4 CONFIRMATION OF SHRAGER AND JOHNSON'’S RESULTS

Although our focus on order 3 units, especially XOR, led us to choose anti-correlated
inputs (A and B never simultaneously present, Pab=0), we ran an exploration along
the simultaneity axis which allowed to confirm Shrager and Johnson’s findings of
increase in order 2 units when Pab=0.5. Figure 2 presents the results of varying
Pab from 0 to 1. There is a regular increase of the order 2 slope with Pab, and
that the value which Shrager and Johnson used (0.5) yields indeed a positive slope
more than 3 s.d.’s above zero. The speed of the dynamic wave of trophic factor,
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which was an important determinant of the emergence of complexity in Shrager and
Jonshon’s study, had no remarkable influence in ours.
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Figure 2: Influence of Simultaneity of Appearance of A and B

3.5 DENSITY OF TROPHIC FACTOR

The total amount of trophic factor distributed by the TF wave over a connection
that does not die prematurely is one of the two factors of development, the other
being pruning. A trophic factor of 1 means that the connection can at best double
its strength (but will do so only if both neurons are in synchrony all the time). We
explored amounts of trophic fators from 0 to 20 by increments of 2, with both the
"SYM” and the ”ASY” default parameter sets. The results show that for low levels
of trophic factor (for 0 to 6) there is a linear increase of all effects with the TF level
(see Figure 3 for ”SYM”; in "ASY” both order 2 and order 3 slopes are positive
and have the same linear-with-ceiling shape) .
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Figure 3: Influence of Trophic Factor density for "SYM”
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3.6 PROBABILITY OF PRUNING

Pruning is determined by a probability of connection death, which has been varied
from 0 to 0.99 (See Figures 4 and 5). In the "ASY” network, pruning has only
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a small negative effect on the slope of appearance of order 2 units, but it weights
heavily against appearance of order 3 units. In the ”SYM” network, pruning causes
a stronger slope of disappearance for order 2 units, but its influence on order 3 units
is non-linear, with an inverse U shape. The ascending part of that curve suggests
that order 3 units appear by pruning of order 2 units. However, there is a need for
blocks of order 2 units around the blocks of order 3 units, which accounts for the
second part of the inverted U curve.
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Figure 4: Influence of Pruning probability for ”SYM”
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Figure 5: Influence of Pruning probability for ” ASY”

4 CONCLUSION

There are two results of primary interest in these simulations. First, we find that,
with several different parameter settings, non-linearly separable functions appear
almost systematically in the right half of the network. This is the region of ”late-
learning” columns. The finding that a network trained under a Hebbian learning
regime might learn the XOR function is unanticipated, since Hebbian learning in the
general case will not learn uncorrelated patterns. Given the biological plausibility
of Hebbian learning, it would be useful to discover a scheme by which such function
coud be learned. The result obtained here suggests one such plausible scheme. The
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"high-order” XOR function can be composed of two lower-order functions (e.g.,
AND and OR; NAND and NOR). The effect of forcing learning to follow a spa-
tiotemporal gradient is that early learning units extract low-order features from
the input. These early learning units then provide an additional source of input to
late-learning units, which learn the XOR funtion.

The second result is that this learning scheme suggests one account by which brain
organization might be produced, not through explicit assignment of function to
different spatial regions, but as an emergent result of a developmental process. Thus,
the current findings support Shager and Johnson’s hypothesis that a dynamical wave
model might lead to such organization. The question we are currently pursuing is
whether complex inputs (e.g., inputs with spatial structure) might be decomposed
in a similar manner, with early learning regions extracting simpler features, and
later learning regions extracting higher order, more abstract features.
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